1,750 research outputs found

    Robust damping controller design in power systems with superconducting magnetic energy storage devices

    No full text
    Published versio

    STATUS AND RECOMMENDATIONS FOR IN SITU ANOA (Bubalus sp.) WITH SUGGESTED IMPLICATIONS FOR THE CONSERVATION BREEDING POPULATION (Status dan Rekomendasi Anoa (Bubalus sp.) In Situ dengan Implikasi untuk Konservasi Populasi Berbiak)

    Get PDF
    Ringkasan ini menguraikan status konservasi in situ kerbau kerdil Sulawesi. Trend populasi yang dilaporkan dalam dua belas tahun terakhir mengarahkan penulis dalam menyoroti arti penting konservasi populasi berbiak di lokasi ex situ pada masa mendatang. Anoa terdiri dari dua jenis kerbau kerdil Bubalus depressicornis & B. quarlesi endemik Pulau Sulawesi, Indonesia. Kajian distribusi anoa berdasarkan laporan historis dan sebagai hasil data lapang terbaru (1990-an sampai 2002) menyoroti terjadinya penurunan di keseluruhan pulau, terutama di semenanjung selatan dan timur laut. Penurunan terjadi akibat perburuan lokal untuk daging dan kehilangan habitat. Sebagian besar populasi secara cepat mengalami fragmentasi. Konservasi populasi viable pada akhirnya akan membutuhkan pengelolaan metapopulasi dan peran yang lebih besar dari populasi di kebun binatang.Kata Kunci: in situ, anoa, konservasi, populasi berbiak

    Ferromagnetic transition temperature enhancement in (Ga,Mn)As semiconductors by carbon codoping

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org/We present a theoretical study of (Ga,Mn)(As,C) diluted magnetic semiconductors with high C acceptor density that combines insights from phenomenological model and microscopic approaches. A tight-binding coherent-potential approximation is used to describe the electronic structure in the presence of Mn-Ga and C-As impurities. We find only a small effect of C on the distribution and coherence of electronic states close to the top of the valence band and on the coupling between Mn moments, even at doping levels of several per cent. These results justify applying the model of ferromagnetic Mn-Mn coupling mediated by itinerant holes in the valence band also to C doped samples. The increase of ferromagnetic transition temperature due to the presence of C acceptors is illustrated by calculations that use the k.p Kohn-Luttinger description of the GaAs valence band and assume systems where Mn local moment and itinerant hole densities can be varied independently

    Schistosomes in the Lung: Immunobiology and Opportunity

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordSchistosome infection is a major cause of global morbidity, particularly in sub-Saharan Africa. However, there is no effective vaccine for this major neglected tropical disease, and re-infection routinely occurs after chemotherapeutic treatment. Following invasion through the skin, larval schistosomula enter the circulatory system and migrate through the lung before maturing to adulthood in the mesenteric or urogenital vasculature. Eggs released from adult worms can become trapped in various tissues, with resultant inflammatory responses leading to hepato-splenic, intestinal, or urogenital disease – processes that have been extensively studied in recent years. In contrast, although lung pathology can occur in both the acute and chronic phases of schistosomiasis, the mechanisms underlying pulmonary disease are particularly poorly understood. In chronic infection, egg-mediated fibrosis and vascular destruction can lead to the formation of portosystemic shunts through which eggs can embolise to the lungs, where they can trigger granulomatous disease. Acute schistosomiasis, or Katayama syndrome, which is primarily evident in non-endemic individuals, occurs during pulmonary larval migration, maturation, and initial egg-production, often involving fever and a cough with an accompanying immune cell infiltrate into the lung. Importantly, lung migrating larvae are not just a cause of inflammation and pathology but are a key target for future vaccine design. However, vaccine efforts are hindered by a limited understanding of what constitutes a protective immune response to larvae. In this review, we explore the current understanding of pulmonary immune responses and inflammatory pathology in schistosomiasis, highlighting important unanswered questions and areas for future research.Biotechnology and Biological Sciences Research Council (BBSRC)Manchester Collaborative Centre for Inflammation Research (MCCIR)Royal SocietyWellcome TrustMedical Research Council (MRC)University of Exete

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Unconventional quantum Hall effect and Berry’s phase 2pi in bilayer graphene.

    Get PDF
    There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry’s phase pi, which results in a shifted positions of Hall plateaus. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and exhibit Berry’s phase 2pi affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies

    High Resolution Spectroscopy of Two-Dimensional Electron Systems

    Full text link
    Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.Comment: There are formatting and minor textual differences between this version and the published version in Nature (follow the DOI link below

    The NIH-NIAID Filariasis Research Reagent Resource Center

    Get PDF
    Filarial worms cause a variety of tropical diseases in humans; however, they are difficult to study because they have complex life cycles that require arthropod intermediate hosts and mammalian definitive hosts. Research efforts in industrialized countries are further complicated by the fact that some filarial nematodes that cause disease in humans are restricted in host specificity to humans alone. This potentially makes the commitment to research difficult, expensive, and restrictive. Over 40 years ago, the United States National Institutes of Health–National Institute of Allergy and Infectious Diseases (NIH-NIAID) established a resource from which investigators could obtain various filarial parasite species and life cycle stages without having to expend the effort and funds necessary to maintain the entire life cycles in their own laboratories. This centralized resource (The Filariasis Research Reagent Resource Center, or FR3) translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are unaware of the scope of materials and support provided by the FR3. This review is intended to provide a short history of the contract, brief descriptions of the fiilarial species and molecular resources provided, and an estimate of the impact the resource has had on the research community, and describes some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators
    • …
    corecore